RUSH, Phase I

Completed Technology Project (2013 - 2014)

Project Introduction

Space presents a challenging environment for computing. Extended development times and radiation tolerance requirements leave hardware performance a decade or more behind the terrestrial state-of-the-art at the time of deployment. Additionally, once deployed, hardware changes are impractical, encouraging a trend towards increased software programmability. At the same time, topside pressure from application advancements is forcing space-based platforms to improve throughput and latency while reducing power consumption. A popular approach to addressing the tension between these requirements is the heterogeneous processing architecture. By providing multiple hardware tools that optimally support a subset of the anticipated workload, a heterogeneous architecture can offer performance and power solutions to the application developer. However, programming these systems is extremely challenging due to variations in toolsets and data sharing interfaces. As a result, data sharing and dynamic workload scheduling across heterogeneous architectures are often suboptimal and hindered by poor scalability. In this research and development effort, we study the feasibility of unifying a heterogeneous processing platform a unique programming model This platform is called the Assimilation Dynamic Network (ADN). The ADN employs a mesh network and virtual tiles on FPGAs and scalable multicore processors to create a cleaner and innovative programming model.

Primary U.S. Work Locations and Key Partners

RUSH

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

RUSH, Phase I

Completed Technology Project (2013 - 2014)

Organizations Performing Work	Role	Туре	Location
MaXentric Technologies, LLC	Lead Organization	Industry	Fort Lee, New Jersey
Goddard Space Flight Center(GSFC)	Supporting	NASA	Greenbelt,
	Organization	Center	Maryland
University of California-	Supporting	Academia	La Jolla,
San Diego(UCSD)	Organization		California

Primary U.S. Work Locations		
California	Maryland	
New Jersey		

Project Transitions

May 2013: Project Start

May 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140717)

Images

Project Image

RUSH (https://techport.nasa.gov/imag e/133622)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

MaXentric Technologies, LLC

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Brandon Beresini

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

RUSH, Phase I

NASA

Completed Technology Project (2013 - 2014)

Technology Areas

Primary:

- TX02 Flight Computing and Avionics
 - □ TX02.1 Avionics
 Component Technologies
 □ TX02.1.5 High
 Performance Field
 Programmable Gate
 Arrays

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

